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1. Introduction

It is sometimes hoped that the mysteries of short-distance gravity will help solve the noto-

rious Cosmological Constant Problem [1]. However, it is difficult to see where the opportu-

nity lies. The Feynman diagrams for matter renormalization of the cosmological constant

involve only the couplings of long wavelength gravitational fields to the quantum Stan-

dard Model (SM), the domain in which General Relativity appears to work perfectly well.

(See for example the discussion in ref. [2].) Another hope has been to find a symmetry

under which a small cosmological constant is natural. But the most obvious candidates,

supersymmetry and conformal invariance, appear too badly broken in Nature to serve this

purpose. In this paper, we study a scenario in which both hopes may be realized. We

employ a discrete symmetry to suppress the cosmological constant, but one which leads

to instabilities of flat spacetime via gravitational processes. Adequate suppression of these

processes requires a drastic breakdown of General Relativity at shorter distances.

The discrete symmetry, described in the next section, leads to an effective Lagrangian

essentially the same as that proposed in ref. [3],

L =
√−g{M2

P lR − ρ0 + Lmatt(ψ,Dµ) − Lmatt(ψ̂,Dµ) + · · ·}, (1.1)
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where gµν is the metric, ψ denotes a set of “visible sector” fields, including the SM, and ψ̂

denotes an identical copy of the visible fields.1 The matter Lagrangian function, Lmatt, is

the same in both terms in which it appears, but with different arguments. We refer to the

ψ̂ as the “ghost sector” because of the “wrong” sign in front of its Lagrangian, including

kinetic terms. Note that the ψ and the ψ̂ include separate sets of gauge fields and separate

sets of charged matter. We will discuss the ellipsis in the next section. The central point

of eq. (1.1) is that the visible and ghost sectors have equal and opposite vacuum energies,

canceling in their contribution to the cosmological constant, leaving only the bare (and

possibly small) constant, ρ0. This idea has an obvious shortcoming, namely instabilities

originating from the ghost sector. In this paper, we nevertheless take the idea seriously by

identifying the underlying symmetry, analyzing quantum effects and deducing the features

required to make it a controlled and realistic scenario.

Because of negative energy excitations in the ghost sector, the Minkowski “vacuum”

cannot be the ground state. However, as long as positive and negative energy fluctuations

are completely decoupled, the Minkowski vacuum is stable. But with any coupling between

the two, the vacuum can spontaneously decay into combinations of positive and negative

energy states. Since kinematics alone do not prevent arbitrarily large mass particles being

produced in such processes, even effective field theory breaks down, becoming useful only

to the extent that the coupling between positive and negative energy fluctuations is very

weak. See ref. [6, 7] for an earlier discussion of vacuum decays in the presence of ghosts.

In the presence of gravity all excitations of matter are necessarily coupled. The need

to prevent excessively rapid decay of the vacuum requires the graviton momentum, pµ, to

be cut off in the ultraviolet. It is not enough to restrict the off-shell Lorentz invariant

p2; in fact, the components of pµ must be cut off (in the rest frame of the universe),

thereby necessitating gravitational Lorentz violation [7]. Violation of Lorentz invariance in

a gravitational theory is particularly challenging because Lorentz invariance is part of the

gauge symmetry of General Relativity. It is well known that breaking a gauge symmetry

explicitly converts ”pure gauge” degrees of freedom into physical degrees of freedom in the

infrared. Any such new infrared physics must somehow not interfere with all current tests

of General Relativity.

Nevertheless, explicit effective field theories have been constructed in which gravita-

tional Lorentz violation is realized by a generalization of the Higgs mechanism [8, 9]. The

leading effects on the infrared in these theories is to modify the dispersion relation of the

graviton and to add additional light degrees of freedom. For a broad range of parameters,

these modifications easily avoid current bounds on deviations from General Relativity. Sub-

leading effects in the infrared, namely higher dimensional operators, can have a growing

impact in the ultraviolet on the graviton dispersion relation. It is at least possible to imag-

ine the existence of ultraviolet completions of such effective theories in which large graviton

momentum transfers are highly suppressed. In this paper, we will make this admittedly

strong assumption.

1A later proposal in a similar vein [4, 5] introduced a symmetry under which fields are exchanged between

two independent spacetimes. However, the extension of the theory to the quantum regime appears to be

quite problematic.
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The initial conditions for successful Big Bang cosmology require an essentially empty

ghost sector, which can arise from an early inflationary phase [3].

Quantum gravity gives corrections to the perfect cancellation of vacuum energies of

visible matter and ghosts. Adequate suppression of these contributions to make the ob-

served cosmological constant natural very likely requires a breakdown in the gravitational

force close to present experimental limits from sub-millimeter tests of Newton’s Law [10 –

13]. Future tests should be able to probe this breakdown. The possible connection between

the resolution of the cosmological constant problem and the sub-millimeter scale was first

made in ref. [14]. Refs [15, 2, 16] proposed that this resolution is realized by de-localizing

the gravitational interaction with matter on this scale, in a manner consistent with the

equivalence principle. The technical connection between this proposal and the present

paper will be discussed in future work [17].

This paper is organized as follows. In section 2, we motivate our effective Lagrangian

from the viewpoint of a visible/ghost matter discrete symmetry called “energy-parity”,

explicitly (but weakly) broken by gravitational dynamics. In section 3, we study quantum

dynamics of matter in a fixed gravitational background and show that there is no instability

from negative energies at this level, and that the matter contributions to the cosmological

constant naturally cancel due to energy-parity. In section 4, we estimate the quantum

gravitational corrections to the cosmological constant and (assuming naturalness) use them

to bound the cutoff scale on General Relativity. In section 5, we show that as long as

gravitational Lorentz violation occurs at not much shorter distances than the cutoff of

General Relativity, the instability of flat spacetime due to the negative energy fluctuations

is consistent with observation. In section 6, we discuss the classical laws of gravity in the

presence of negative energy fluctuations. In section 7, we discuss our symmetry mechanism

for controlling the cosmological constant when there are metastable vacua in the matter

sector. In section 8, we show how inflation can naturally lead to the cosmological initial

conditions needed for our scenario. Finally, section 9 discusses our results.

2. Energy-parity

In order to motivate eq. (1.1) from a symmetry point of view, we begin by neglecting

gravity and formally consider a Z2 “energy-parity” symmetry operation P , with P 2 = 1,

acting on the matter Hilbert space. However, instead of commuting with the Hamiltonian,

H, like a standard symmetry operator, energy-parity satisfies

{H,P} ≡ HP + PH = 0. (2.1)

Thus, an energy eigenstate,

H|E〉 = E|E〉, (2.2)

is transformed into one with the opposite energy,

HP |E〉 = −EP |E〉, (2.3)
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rather than a state degenerate with |E〉, as is the case for standard symmetries. We

will implement this parity so a Poincaré-invariant state exists which is also energy-parity

invariant, namely P |0〉 = |0〉. From this follows

〈0|{H,P}|0〉 = 2〈0|H|0〉 = 0. (2.4)

This corresponds to a vanishing cosmological constant contribution when gravity is turned

back on.

Our fields transform under energy-parity in the following way:

gµν(x) → gµν(x)

ψ(x) ↔ ψ̂(x). (2.5)

Naively, it would appear that the pure gravity sector respects energy parity in eq. (1.1),

while the matter Lagrangian maximally violates it. However, the opposite is true. To see

this, ignore gravity and note that eq. (2.5) must be accompanied by

H → −H, (2.6)

in order to satisfy eq. (2.1). Relating the Hamiltonian to the Lagrangian,

L =

∫

d3~x(Πψ̇ + Π̂
˙̂
ψ) − H

=

∫

d3~x(Π
δH

δΠ
+ Π̂

δH

δΠ̂
) − H, (2.7)

we see that the Lagrangian and action should be odd under eq. (2.5), in order to respect

energy-parity. Our matter action respects energy-parity, and the gravity action maximally

and explicitly violates it.

Energy-parity alone does not preclude direct matter couplings between ψ and ψ̂, con-

sidered part of the ellipsis of eq. (1.1). Such visible-ghost couplings must be present at some

level since they receive contributions induced by quantum gravity loops. These couplings,

if present, would contribute to the decay of the vacuum. However, if we assume these

couplings have their minimal natural strength, they do not dominate any of our vacuum

decay estimates in section 5 and we will thus ignore them. The remaining terms in the

ellipsis of eq. (1.1) are purely gravitational higher derivative terms. Again, their effects do

not dominate any estimates in this paper.

3. Fixed gravitational background

Here, we study matter dynamics in a fixed soft (low-curvature) gravitational background.

At the purely classical level, the negative sign in front of the ghost sector Lagrangian poses

no problem, because classically the sign of the Lagrangian is physically irrelevant and the

two sectors are completely decoupled without dynamical gravity. Assuming all neutrinos
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have mass (entirely for simplicity of exposition), the effective theory in the far infrared is

Leff =
√−g

{

−1

4
F 2

µν − ρvis +
1

4
F̂ 2

µν + ρvis

}

=
√−g

{

−1

4
F 2

µν +
1

4
F̂ 2

µν

}

. (3.1)

The matter vacuum energy contributions cancel between the visible and ghost sectors

because of energy-parity.

Now consider the same situation in quantum field theory. As a warm-up we simplify

to the case where ψ denotes a single real scalar field rather than the entire visible sector.

Similarly, ψ̂ denotes a single ghost scalar. Further, we simplify the gravitational background

to be exactly Minkowski space, gµν = ηµν . The leading matter Lagrangian can then be

written,

L =
1

2
(∂µψ)2 − 1

2
m2ψ2 − λψ4 − 1

2
(∂µψ̂)2 +

1

2
m2ψ̂2 + λψ̂4, (3.2)

and the quantized Hamiltonian density is given by

H =
1

2
Π2 +

1

2
(5ψ)2 +

1

2
m2ψ2 + λψ4 − 1

2
Π̂2 − 1

2
(5ψ̂)2 − 1

2
m2ψ̂2 − λψ̂4. (3.3)

This is the sum of two decoupled Hamiltonians. We can quantize both sub-sectors, with

positive energies propagating forwards in time for ψ and negative energies propagating

forwards in time for ψ̂. Even corrected by interactions, the zero-point energies of ψ and

ψ̂ cancel, leaving zero net vacuum energy. Again, because the two sectors are completely

decoupled, no pathology exists in the negative energy sector. From the viewpoint of that

sector, we have merely renamed Energy (H) by − Energy (− H).

Finally, let us consider our real case of interest, general quantum visible matter in a

soft gravitational background. Here, it is easier to use path integral methods. Because the

dynamics in the two matter sectors are decoupled in the absence of gravitational dynamics,

the partition functional factorizes,

Z =

(
∫

Dψ ei
R √−g Lmatt(ψ,Dµ)

)(
∫

Dψ̂ e−i
R √−g Lmatt(ψ̂,Dµ)

)

, (3.4)

where now ψ and ψ̂ are a generic set of interacting fields. The opposite sign of the ghost

Lagrangian now appears as the the replacement i → −i in the path integral phase factor.

Since we want to propagate positive energies forward in time in the visible sector, we choose

the usual “ + iε” prescription, while propagating negative energies forward in time in the

ghost sector requires a “−iε” prescription. All other factors of “i” in effective quantum field

theory can be eliminated from the Feynman rules in position space by working exclusively

in terms of real fields and couplings (taking real and imaginary components of any complex

fields)2. Thus, the two matter sectors have identical position space Feynman rules except

2There is a subtlety in the case of fermions. Here we can work in terms of real Grassman fields, χ.

However, because of their anti-commuting nature, bilinears made from them must be multiplied by “i” to

be Hermitian, (iχ1χ2)
† = iχ1χ2. Thus, terms in the Lagrangian ∼ χ4n+2 will have a factor of “i” that
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for the replacement i → −i everywhere. If we integrate out some high energy physics

(symmetrically) from each of the matter sub-sectors, we must get a local effective theory

of the form,

Zeff =

(
∫

DψIR ei
R √−gLeff(ψIR)

)(
∫

Dψ̂IR e−i
R √−gLeff(ψ̂IR)

)

, (3.5)

that is, the ghost and visible factors identical except for the replacements ψ ↔ ψ̂, i →
−i. This demonstrates the matter-renormalization stability of both energy-parity and the

decoupling of the ghost and visible sectors.

If we integrate out all massive matter, we arrive at an effective theory of just the

photons coupled to the gravitational background,

Zeff =

(
∫

DAµ ei
R √

−g(−F 2/4−ρvis)

)(
∫

DÂµ e−i
R √

−g(−F̂ 2/4−ρvis)

)

=

(
∫

DAµ ei
R √−g(−F 2/4)

)(
∫

DÂµ e−i
R √−g(−F̂ 2/4)

)

. (3.6)

Energy-parity forces the cancellation of the cosmological constant induced by the quantum

visible sector, ρvis, against the corresponding term induced by the ghost sector.

4. Quantum gravity

We next need to consider a cutoff, µ, on graviton momenta, below which we trust eq. (1.1).

We will find that in order to adequately suppress gravitational violation of energy-parity

as well as vacuum decay, µ must be much smaller than the weak scale energies to which

we have tested the SM. Physically, µ represents the scale of unspecified new gravitational

physics which serves to cut off amplitudes derived from eq. (1.1). We will further require

this physics to be Lorentz-violating. It is unorthodox to contemplate the breakdown of

General Relativity at energies below the breakdown of SM quantum field theory, or to

consider a fundamental breakdown of Lorentz invariance at any scale, but these ingredients

are central to our plot, and we are unaware of any rigorous objections.

Because of energy-parity in the matter sector, the only corrections to the cosmological

term are induced by a variety of quantum gravitational corrections. The gravitational sector

itself naturally induces a quantum vacuum energy of order µ4. It is therefore technically

natural for the bare cosmological constant in eq. (1.1) to be of this same order,

ρ0 ∼ O(µ4). (4.1)

cannot be eliminated. However, as long as there is a conserved fermion number, or fermion number is

violated only by 4n-fermion operators (for example, the Standard Model or the Standard Model with Dirac

neutrinos), this extra “i” translates into an overall pre-factor for amplitudes involving odd fermion number

processes. Since these do not interfere with amplitudes for even fermion number, the extra “i” falls out of

all physical probabilities. Thus, without changing the physics, one can make the replacement i → −i in

front of ghost fermion bilinears relative to visible bilinears.
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Figure 1: Hard matter (a) and ghost (b) loops attached to graviton loops and their effective

vertices.

From now on we will assume this to be the case. Given the observed dark energy ∼
(2 × 10−3eV)4 [18 – 20], naturalness implies

µ <∼ 2 × 10−3eV. (4.2)

This corresponds to a length scale, 1/µ ∼ 100 microns. A more refined estimate, including

factors of (4π), gives a minimal breakdown length of 30 microns [2]. Such a breakdown

of General Relativity should be probed by ongoing sub-millimeter tests of Newton’s Law

which have, so far, probed gravity down to 200 microns [10].

Quantum gravity corrections to matter vacuum energy do not cancel completely, but

the largest contributions, from scales above µ, do cancel between the two matter sectors.

To see this, note that since graviton momenta are cut off at µ, we can imagine integrating

out all matter physics harder than µ before integrating out gravitons. This must generate

local effective vertices for the gravity (see figure 1). As discussed in section 3 in path

integral terms, the visible and ghost contributions are related by i → −i. For a local

vertex, the only factor of “i” is the pre-factor of the action in the path integral. Thus,

these hard matter contributions must cancel between the two matter sectors. This leaves

integrating out gravitons, cut off by µ, as well as matter physics softer than µ, say from

photon loops and ghost-photon loops. These do not generally cancel, because the non-local

gravity effective action not only has a pre-factor of i, but also has imaginary parts from

soft matter cuts. By dimensional analysis the leading contributions of this type to the

cosmological constant are

δρ ∼ µ6/M2
P l. (4.3)

For µ ∼ O(10−3eV), these contributions are negligible.
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There is a caveat in our prediction for the breakdown of Newton’s Law in sub-millimeter

tests. Inferring the value of the cosmological constant from observations followed by re-

quiring naturalness in the pure quantum gravity sector contribution to the cosmological

constant (as above), yields the most accessible length scale for the breakdown of General

Relativity. Indeed, we will show elsewhere [17] that these estimates do not change even

if one begins with a supersymmetric gravitational sector, given that the SM is not super-

symmetric below a TeV. However, it is in principle possible that the gravitational physics

that acts to cut off these contributions does not couple appreciably to SM matter, and

therefore would not show up in sub-millimeter tests. In this case, there is still a prediction

following from the contributions of eq. (4.3), which rests robustly on the coupling of the

gravity cutoff physics to matter. Requiring δρ in eq. (4.3) be on the order of the observed

dark energy yields a prediction for the breakdown of Newton’s Law at distances

1/µ ∼ 1/(10MeV) ∼ 10 fm. (4.4)

5. Vacuum decay

We now consider the inevitable instability implied by the full dynamics of the ghost sector

coupled to gravity. We assume that in the far past, the ghost sector starts off close to

empty, while the visible sector and gravity are close to their state in standard cosmology.

The question arises how rapidly physical processes can exploit the negative energy states

of the ghost sector in order to populate both that sector as well as the visible and gravity

sectors. A similar situation, in the context of “phantom” dark energy [21] was analysed in

refs. [6, 7].

To see what issues are involved, let us first return to our toy example of eq. (3.3), now

adding a perturbation connecting the regular and ghost-like sectors,

δH = gψ2ψ̂2. (5.1)

Such a vertex destabilizes the Minkowski vacuum (empty space) by allowing energy con-

serving processes such as (Nothing) → ψ(k1)+ ψ(k2)+ ψ̂(p1)+ ψ̂(p2). At leading order for

this process, the event rate per unit time per unit volume is

P→ψψψ̂ψ̂ ∼ g2

∫

d4p1

∫

d4p2

∫

d4k1

∫

d4k2δ(p
2
1 − m2)δ(p2

2 − m2)δ(k2
1 − m2)δ(k2

2 − m2)

× θ(−p10)θ(−p20)θ(k10)θ(k20)δ
4(p1 + p2 + k1 + k2). (5.2)

This type of calculation resembles ordinary 2 → 2 cross-section calculations for (−p1) +

(−p2) → k1 + k2. However, while in 2 → 2 scattering the initial momenta, p1, p2 are given

and we only must integrate over the final phase space of k1, k2, for vacuum decay we must

obviously also integrate over the phase space for p1, p2. We will massage this extra phase

space integration by defining P ≡ p1 + p2, p ≡ p1 − p2, and insert the identity (since P is

always time-like or null),
∫ ∞

0
dsδ(P 2 − s) = 1. (5.3)

– 8 –
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Further noting that the on-shell δ-functions for the pi satisfy,

δ((P + p)2 − m2)δ((P − p)2 − m2) ∝ δ(p2 + P 2 − m2)δ(P.p), (5.4)

we find

P→ψψψ̂ψ̂ ∼ g2

∫ ∞

0
ds

∫

d4Pδ(P 2 − s)θ(−P0)

∫

d4pθ(−p0)δ(p
2 + s − m2)δ(P.p)

×
∫

d3~k1

2ωk1

∫

d3~k2

2ωk2

δ4(k1 + k2 + P ). (5.5)

Finally, defining vµ ≡ −Pµ/
√

s, we arrive at the simple form,

P→ψψψ̂ψ̂ ∼ g2

∫

d3~v

2
√

1 + ~v2

∫ ∞

0
ds

√
s

∫

d4pθ(−p0)δ(p
2 + s − m2)δ(−p.v)

×
∫

d3~k1

2ωk1

∫

d3~k2

2ωk2

δ4(k1 + k2 −
√

sv), (5.6)

where vµ has become a 4-velocity with v0 ≡
√

1 + ~v2.

Notice that for fixed v and s, the remaining phase space integrals over p,~k1 and ~k2

are necessarily finite. In particular they give some Lorentz-invariant function of s and

vµ — really a function of s alone since v2 = 1. For s À m2, this function scales as
√

s

by dimensional analysis. Thus, the integral over s has a serious power divergence even

in this tree level calculation. Assume that some new Lorentz-invariant physics appears

at a scale smax to cut off this divergence and give a finite s integral. This still leaves

the integral over ~v, which diverges quadratically because of the v-independence deduced

above. There is no way for any new Lorentz-invariant physics to cut off this divergence in

the decay probability. To get a finite answer we must have Lorentz-violating physics act

as the cutoff [7] at a scale E , and assume Lorentz-invariance is a (very good) approximate

symmetry below this scale. Thus, in our toy example, we estimate

P→ψψψ̂ψ̂ ∼ g2E2smax. (5.7)

The decomposition of the phase space integrals for the decays of the vacuum seen in the

above example generalize straightforwardly to all varieties of such processes at any order

in perturbation theory. There is an overall integral over the total ghost 4-momentum,
∫

d4P . . . =

∫

d3~v/2
√

1 + ~v2

∫

dss . . . , (5.8)

with all phase space integrals over relative ghost momenta and all visible momenta yielding

some finite function of s alone if all physics is Lorentz-invariant. New Lorentz-invariant

physics can cut off the s integral, but there is always an overall divergent
∫

d3~v/2
√

1 + ~v2

which can only be cut off by invoking high-energy Lorentz-violation. Since, in our scenario,

such processes connecting the ghost and other sectors always go via the gravitational sector,

we will identify both
√

smax and E with µ.3

3In principle, we could simply consider two gravitational cutoffs,
√

smax 6= E , which would change some

of our estimates. We have adopted a single gravitational cutoff scale, µ, as the simplest option in this paper.

We discuss the implications of the alternative option in future work [17].
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The dominant two processes for vacuum decay are

Nothing → ψ + ψ + ψ̂ + ψ̂,

Nothing → (graviton−excitation) + ψ̂ + ψ̂. (5.9)

The first process is mediated by an off-shell graviton, so its decay rate is suppressed by

1/M4
P l. The second process includes the possibility of producing excited gravitons (or other

particles in the gravitational sector) responsible for cutting off gravity at the scale µ. The

first process is the dominant production of visible matter from the vacuum. For the case of

massless ψ (i.e., photons), we use dimensional analysis, and include the (4π)s which result

from phase space integrals to estimate

P→γγγ̂γ̂ ∼ 1

4π

(

1

8π2

)2 µ8

M4
P l

∼ 2 × 10−92

(

µ

2 × 10−3eV

)8

[cm3 × 10Gyr]−1. (5.10)

Given our estimate of µ, the number of photons produced over the lifetime of the universe

is completely negligible. We become experimentally sensitive to this process in the cosmic

ray background [22] only when µ >∼ MeV [7]. This may become relevant if the possibility

of a higher gravitational cutoff, as discussed at the end of the last section, is realized.

The second process, the decay into excited gravitons and ghosts, is the dominant

process populating the universe with ghosts. We take the gravity-sector particles to have

mass ∼ µ and their coupling to (ghost) matter of gravitational strength. A rough estimate

of the current energy density of ghost radiation due to this decay is the rate times the age

of the universe times the average energy of the ghosts (which again will be of order µ).

The estimate

t0 µ P→h∗γ̂γ̂ ∼ 1

4π

(

1

8π2

)

µ7

M2
P l

t0

∼ (2 × 10−12eV)4
(

µ

2 × 10−3eV

)7 (

t0
10Gyr

)

, (5.11)

is negligible compared with, for example, the radiation energy density today.

We have focused on photons as massive particles are even less important due to the

inherent phase-space cutoff µ on all processes.

6. Classical gravity with ghosts

In a fixed external gravitational field such as we considered in section 3, ghost matter

behaves identically to ordinary matter, the only distinction being the overall sign of the

Lagrangian, which is irrelevant to the equations of motion. For example, if a ghost particle

is brought near the Earth it will fall towards the ground. A ghost mass and a visible mass

will be repelled from each other, however, if the ghost mass dominates. This is because

we can think of the ghost mass as setting up a gravitational field which is then felt by the

smaller visible mass. Since the sign of the ghost stress tensor is reversed, the linearized

gravitational field set up is also reversed. The visible mass sees this reversed field, and
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is repelled rather than attracted. Thus, there must be a transition from attraction to

repulsion depending on the masses. The gravitational force between two ghosts is also

repulsive. To see this, note that since the overall sign of the action is irrelevant, it is

simpler to think of the gravitational sector as being ghost-like relative to the ghost sector.

The non-relativistic force law arises diagrammatically from one-graviton exchange. The

relative ghost-like nature of gravity implies a sign-flip for the graviton compared to the

usual computation. In the ghost sector, therefore, the usual law of universal attraction is

replaced by universal repulsion.

All these results are illustrated by writing the Lagrangian in the non-relativistic ap-

proximation for the relative motion between two masses:

Lrelative =
1

2

m1 m2

m1 + m2
~̇r
2
+ GN

m1 m2

|~r| . (6.1)

The kinetic coefficient is just the usual formula for the reduced mass. This formula con-

tinues to hold even in the presence of ghost masses, the only difference being that these

ghost masses must be considered negative. There are, of course, relativistic corrections to

the static force, most significantly gravitational radiation from accelerating ghost masses.

Instead of slowing such masses, the emission of gravitational radiation speeds them up.

The center-of-mass coordinate is cyclic and decouples from the relative motion as usual.

However, in the limit m1 = −m2 ≡ m, the relative coordinate ~r becomes cyclic and the

center of mass coordinate becomes proportional to ~r. The more useful coordinate is the

average position ~R = ~x1 + ~x2 with the equation of motion

~̈R =
2GNm

r2
r̂, (6.2)

in which case the matter-ghost system spontaneously accelerates in the direction r̂, while

their relative positions remain fixed.

To avoid such an exotic type of dark matter (which would spoil standard cosmology

were it to (co-)dominate), we require the ghost sector to be far more empty than the visible

sector of our universe. This should be considered a (plausible) requirement on the initial

conditions of the universe. As long as the negative energy density and pressure of ghost

matter is subdominant, the expansion of the universe is driven by visible matter, and the

cosmological term in standard fashion.

There is a constraint on how far back in cosmological time our effective theory con-

tinues to make sense, following from the gravitational cutoff µ2 on spacetime curvature.

From Einstein’s Equations this corresponds to an energy density in the matter sector of

order µ2M2
P l ∼ TeV4. Thus we are constrained to cosmology from roughly just above the

electroweak phase transition to the present.

7. Metastable matter vacua

In any proposal which claims to attack the cosmological constant problem, one must con-

sider what happens when the matter sector has a metastable vacuum as well as a true

vacuum, in order to understand what principle determines which vacuum has the sup-
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Figure 2: Meta-stable vacua in a theory with energy parity.

pressed cosmological constant. In the present scenario, a metastable vacuum in the visible

sector must be reflected in the ghost sector, as illustrated in figure 2. The corresponding

vacuum energies are taken to be V2 > V1 and −V2 < −V1. When the two sectors occupy

parity-symmetric vacua at ±V1 or ±V2, the matter contribution to the cosmological con-

stant vanishes (up to the small quantum gravitational corrections we estimated earlier).

But if the visible sector is at V2 while the ghost sector is at −V1, the matter contribution

to the cosmological constant is V2−V1 > 0. Similarly, if the visible sector is at V1 while the

ghost sector is at −V2, a negative cosmological constant, V1 − V2 emerges for the lifetime

of the metastable state. If the metastable vacua decay in the long run (before the vacuum

energy becomes dominant), then eventually both matter sectors will be near ±V1 where

the matter contribution to the cosmological constant vanishes.

8. Inflation

The desired initial conditions of our scenario — standard big bang cosmology beginning

before nucleosynthesis and an empty ghost sector — is surprisingly easy to achieve using

cosmic inflation. Here we elaborate on ref. [3]. The continuity equation for the ghost sector

is the same as that for ordinary matter. For an approximately homogeneous and isotropic

universe, the equation is

0 = T µ
ν;µ ' ∂ρghost

∂t
+ 3(ρghost + pghost)

ȧ

a
, (8.1)

where ρghost and pghost are the energy density and pressure of the ghost sector and a is

the scale factor in the Robertson-Walker metric. While ρghost (and for radiation, pghost) is

negative, the energy density clearly scales like that of normal matter and radiation, namely
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Figure 3: Inflation in a theory with energy parity.

ρghost ∼ a−4 for radiation and ρghost ∼ a−3 for non-relativistic matter. Thus, if the universe

were in a state in which positive vacuum energy dominated, both normal radiation and

matter and ghost radiation and matter would dissipate due to the exponentially growing

scale factor.

Inflation can be generated by the displacement of a scalar field from its minimum as

long as its potential is flat enough (see figure 3). One necessity is that the corresponding

field in the ghost sector is sitting at its maximum for the number of e-foldings required by

inflation. In fact, the ghost inflaton could be initially displaced, so long as its displacement

is smaller than that of the inflaton and positive vacuum energy dominates. The ghost

partner’s dynamics will be governed by eq. (8.1) with ρghost = −(∂tφ̂)2−(∇φ̂)2/(2a2)−V (φ̂)

and pghost = −(∂tφ)2 + (∇φ)2/(2a2) + V (φ̂), leading to

¨̂
φ + 3

ȧ

a
˙̂
φ + V ′(φ̂) = 0, (8.2)

where V (φ̂) is the potential function in Lmatt, and is thus the same in the two sectors. The

ghost inflaton has the same equation of motion as the visible sector inflaton, but because

of the overall minus sign, the actual potential for the ghost inflaton is inverted compared

with that of the visible sector. The displaced ghost rolls up the potential towards its

maximum, performs coherent oscillations and/or reheats into ghost radiation. Positive

vacuum energy dominates and the ghost radiation dilutes as the universe inflates. Finally,

the standard inflaton rolls towards its minimum, perhaps performs coherent oscillations,

and then reheats an otherwise empty universe with only visible matter. This symmetric

looking evolution of the ghost inflaton is what one expects — dynamical gravity breaks the

energy parity symmetry, but coupling to the background metric does not.
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In the simplest picture, the model-building challenge is only to construct an inflation

scenario in which the curvature (and therefore the Hubble scale) during inflation is less than

µ, the energy-momentum cutoff of gravity. Speculation about, for example, the physics

responsible for the cutoff µ may lead to possibilities outside of inflation which address the

question of initial conditions of our universe.

9. Discussion

We proposed a simple symmetry to control the cosmological constant, but one with an

apparently fatal flaw, the instability of flat spacetime. The danger from this instability,

however, is entirely sensitive to features of short distance gravity outside the currently

probed experimental regime. This scenario, therefore, changes the character of the cos-

mological constant problem. The strictest bounds on the distances at which gravity must

be modified in fact arise from the explicit breaking of the protective symmetry by gravity,

putting such modifications within reach of ongoing testsof short distance gravity [10 – 13].

Controlling the instability does, however, introduce a new qualitative requirement, namely

gravitational Lorentz-violation. This is (model-dependently) another source of potential

experimental signals [8]. Gravitational Lorentz violation can also radiatively induce Lorentz

violation in visible matter, but these effects (in fractional shifts in maximal speeds) are neg-

ligibly small, <∼ O(µ2/M2
P l) ∼ 10−60. Our scenario has an acceptable cosmology provided

we have initial conditions with the ghost sector very sparsely populated, and we showed

how inflation can make these initial conditions natural. Ghost matter has unusual gravi-

tational laws and unusual equations of state. If enough of it has survived to the present,

it may provide interesting signals in precision cosmological measurements.

It is of course important to understand how to build consistent theories with gravita-

tional breakdown energy scales far below that of non-gravitational particle physics, as well

as how to incorporate ghost matter at the fundamental level. For gravitational Lorentz

violation, there are two possible scenarios. First, Lorentz invariance may not be a fun-

damental symmetry of Nature, but rather some sort of accidental or emergent symmetry.

Of course this implies emergent General Relativity [23] of some sort. Second, it may be

that Lorentz invariance is a fundamental symmetry, but the gravitational vacuum sponta-

neously breaks this symmetry. Gravitational fluctuations about such a vacuum need not

be constrained by exact Lorentz invariance, as exemplified by the effective field theories

in [8]. Exploration of the character of this Lorentz-violating cutoff may hold the key to

additional experimental tests of our scenario.
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